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Supplementary Material

1. Image regularization as a baseline
In Figure 2 of the main paper, we’ve demonstrated how

a naive and direct optimization on the region-of-interest’s
pixels may lead to an out-of-distribution result. Here, we
show that adding a regularization term to equation (1) in the
paper is insufficient either. To apply the regularization, we
expand the main loss function to be

Lsal

(
Ĩ
)
+ βLsim

(
Ĩ
)
+ γLreg

(
Ĩ
)
,

where Lreg

(
Ĩ
)

is a regularization loss on the pixels of Ĩ,
e.g., image total variation

Lreg

(
Ĩ
)
= M ◦ (∥∇xĨ∥1 + ∥∇y Ĩ∥1),

where ∇x and ∇y represent the gradients with respect to the
horizontal/vertical axes x and y, respectively.

Figure 1 shows a couple of results with different values of
the hyper-parameter γ. We can see that simple regularization
is insufficient for avoiding the out-of-distribution examples,
or for generating realistic images.

2. Implementation Details
First, recall that our loss functions is

Lsal

(
Ĩ
)
+ βLsim

(
Ĩ
)
+ γΓ(θ), (1)

where Ĩ = Oθ(I), and Lsal is the saliency loss term, and Lsim
is the similarity loss term.

2.1. Saliency loss

In (1), Lsal is defined as

Lsal

(
Ĩ
)
=

∥∥∥M ◦
(
S(Ĩ)−T

)∥∥∥2
. The target map T can be an arbitrary map, where the
saliency can be controlled. For example, Figure 2 shows
an example where the saliency level can be controlled by a
single scalar with T = αS(I), for various values of α that
are indicated in the paper.

However, all other examples in the paper are generated

by setting T ≡ 0 to minimize the saliency within the region
of interest (or T ≡ 1 to maximize the saliency, for the
GAN operator). When T ≡ 0 or 1, Lsal

(
Ĩ
)

is equivalent

to
∥∥∥M ◦ S(Ĩ)

∥∥∥2 for saliency decreasing or −
∥∥∥M ◦ S(Ĩ)

∥∥∥2
for saliency increasing, respectively.

2.2. Similarity loss

In equation (1), the similarity term in the loss is defined
as

Lsim

(
Ĩ
)
=

∥∥∥(1−M) ◦
(
Ĩ− I

)∥∥∥2 .
Another way to preserve similarity of pixels outside of the
mask is using a hard constraint such as (1−M)◦

(
Ĩ− I

)
=

0. We can enforce this constraint by copying pixels outside
of mask M in I to Ĩ in each iteration step. Our recolor and
warp operators adopt this hard constraint approach, while
”Learning convolutional networks” and GAN operator adopt
Lsim as equation (1). Such a hard constraint enables us to
crop the image around the distracting region when the region
of interest does not have enough saliency in the original
image. Namely, we can crop the image to a smaller one that
still contains the region of interest - a step which enables to
gain high-saliency, which can be removed more effectively.
Since pixels outside of the mask will be exactly the same,
the crop will not create any artifacts around the cropping
boundary. This is helpful when the region of interest is too
small or not very salient in the original, large image, that
contains more attention grabbing regions.

2.3. Hyper parameters
• For the “recolor” operator, the hyper parameters include

weight parameter γ = 0.01, learning rate = 10, number
of iterations = 800.

• For the “warp” operator,, the hyper parameters include
weight parameter γ = 0.1, learning rate = 1, number of
iterations = 500.

• For the “deep conv” operator, the hyper parameters
include weight parameters β = 100, γ = 0, learning
rate = 0.1, number of iterations = 1000.

• For “GAN” operator, we set γ = 0, β = 0.03, learning
rate = 0.01, number of iterations = 200.
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Figure 1. A naive baseline that applies a direct optimization to the region’s pixels together with a total variation regularization yields
out-of-distribution, unnatural results. γ is the regularization term weight described in equation (1) in the original paper.

Figure 2. Varying the target saliency level. Given an image (middle) and a region of interest (marked by a red box) our approach can control
the saliency level in the specified region of interest. The target saliency is α times the original saliency (within the mask), i.e, T = αS(I).

2.4. GAN operator
In order to apply our GAN operator to real images, the

image should be first embedded in latent codes, e.g., with a



GAN inversion technique. Existing works [7, 15] show that
in-domain images (i.e., images similar to the GAN training
set) can be reconstructed effectively within different sub-
spaces of StyleGAN. For example, Figure 4 shows some
examples of reconstructed images with GAN inversion tech-
niques [15]. As can be seen, the technique achieves reason-
able reconstruction quality on those in-domain examples,
,however, reconstruction of some facial, fine grained de-
tails which are crucial for identity preservation need to be
improved. Moreover, GAN inversion for out-of-domain im-
ages is even a more challenging task. However, recently,
some works [4, 10] show promising results in reconstructing
out-of-domain real images too. Exploring GAN inversion
techniques is beyond the scope of this work, and we assume
that a latent code corresponding to the input image is given,
so our method is focused on the modification of the latent
codes to modify the content (and saliency) of the output
image.

Moreover, in the main paper, we show results where
the embedding of W space is edited by our saliency driven
approach. However, for styleGAN, other embedding space
like W+ space, or style space can also be edited. In Figure
3, we show one example for which our GAN operator edits
different embedding spaces. Recently, there are papers [14]
to further discover the physical meaning of each dimension
of style subspace, and edit a particular subset of style space.
Exploring those directions can be our future works.

2.5. Saliency model
For the experiments in this paper we use the saliency

prediction model EML-Net of [6], with minor modifica-
tions. More specifically, we use NasNet [16] only, without
DenseNet [5] in the EML-Net architecture for simplicity,
since adding DenseNet will only slightly increase the accu-
racy (as reported in Table 1 in [6]).

EML-Net [6] is extensively evaluated and shown to be one
of state-of-the-art models [2, 6, 9]. However, most previous
evaluations are conducted on real images only. To evaluate
the accuracy of the saliency model on edited images, we
compared the predicted maps to the ground-truth fixations
on original and edited images using standard metrics: AUC-
Judd, NSS, SIM and KLD [3]. As shown in Table 1, the
accuracy on edited images is slightly lower than original
ones. It happens since the model is trained on natural images.
Although our proposed operators force the edited images to
be close to a natural images distribution, small deviation
(e.g, 82.5% vs 82.9% for AUC-Judd) may still exist. For
reference, we also provide the accuracy metrics of a baseline
center bias saliency model as a sanity check.

3. More results/analysis on eye-gaze user study
For the three gaze metrics in Table 1 (b) in the main

paper, we also ran a paired samples T-Test (original and
edited images as control and observation, respectively) , to
demonstrate the statistical significance for the changes on
each of the three gaze metrics. As can be seen in Table 2,

AUC-Judd ↑ NSS ↑ SIM ↑ KLD ↓

original (p) 82.9% 1.275 60.7% 0.745
manipulated (p) 82.5% 1.167 57.9% 0.854

original (c) 68.7% 0.714 50.0% 2.208
manipulated (c) 68.4% 0.714 49.8% 2.228

Table 1. original (p): predicted saliency on original images; manip-
ulated (p): predicted saliency on manipulated images; original (c):
center bias baseline saliency on original images; manipulated (c):
center bias baseline saliency on manipulated images.

Duration (ms) First gaze (ms) Gaze saliency

signifance p=6× 10−5 p=1.2× 10−3 p=2.2× 10−5

Table 2. Paired Samples T-Test of manipulated images vs original
ones, withthree gaze features for decreasing saliency cases.

Gaze saliency Duration First gaze

p=0.00055 p=0.0022 p=0.073

Table 3. Paired Samples T-Test of manipulated images vs original
ones, with three gaze features for increasing saliency cases.

the p-value of each metric is < 0.003, implying statistical
significance of gaze saliency/duration reduction and first
gaze time increase.

Besides the experiment to evaluate decreasing saliency as
reported in the paper, we also run experiments of 13 images
from our GAN operator for increasing the saliency. Example
images and their gaze saliency maps for increasing saliency
cases can be found in the supplementary html.

The average gaze duration is increased from 985.09 ms
to 1548.23 ms, and average first gaze time is decreased
from 1555.28 ms to 1210.44 ms. We have conducted the
Paired Samples T-Test for the three gaze features on these 13
examples, as in Table 3. We can see that we have achieved
the statistical significance with these very small number
of examples (except for first gaze time, which is a noisier
feature essentially).

4. Implementation details for experiments
4.1. Details of eye-gaze user study

We developed a user study app on Android phones to
measure users’ gaze/attention on the original and manipulate
images, based on the mobile eye tracking techniques intro-
duced in [13]. The app collects calibration data by asking
participants to look at moving dots on the screen, to enable
high eye tracking accuracy comparable to state-of-the-art
eye trackers with special hardware [13]. Example screen
shots of the user study app are shown in Figure 5. The study
was conducted on internal participants with explicit and fully
informed consent, and with the option for participants to
opt-out of the study or delete the data anytime during or after



(a) Original image (b) Saliency of (a)

(c) W space (d) Saliency of (c) (e) W+ space (f) Saliency of (e)

(g) S space upper (h) Saliency of (g) (i) S space lower (j) Saliency of (i)

Figure 3. Manipulate different embedding space of styleGAN with our GAN operator. For (c), (e), (g) and (i), editing happens in W, W+,
layer 10-12 in style space, layer 0-9 in style space respectively.

the study.

Generate gaze saliency The gaze saliency map is com-
puted following the procedure in [8]. More specifically, we
first convolve each gaze point with a Gaussian kernel, then
take sums of all Gaussian kernels for the gaze points on the
image, and normalize by the number of participants. The
kernel width is chosen 1/30 of the minimum of image width
and height.

First gaze time First gaze time is defined as the time that
gaze visits the region of interest for > 50ms. Note that a
threshold is needed so that only gaze visit on purpose to the
regions within the mask will count, ruling out accidental
gaze visit. If there is no gaze within mask, first gaze time
will be set as 5s, the duration one image is shown to the user.



Figure 4. Reconstruction of real images by GAN inversion. The reconstructed images are then manipulated by our proposed method with
the GAN operator.

4.2. Details of the survey user study

As mentioned in the paper, we conducted a survey user
study that contains two main questions. The goal of the first
was to evaluate how natural our results seem, and the second
to understand what kind of effects users prefer for the task of
saliency reduction. The users were asked to look at various
images with a marked region of interest, together with two
outputs, ours (various effects) and ”look-here!”, and were
asked: “The following two results attempt to draw LESS
attention to the region marked in red on the original image.
Which one do you like better?”. Figure 6 shows a couple of

screenshots from the study.

5. Examples for more operators
The proposed method is a general framework which can

support other operators besides the four ones discussed in
the paper, as long as the operator can constraint the solution
space within the valid space of the saliency prediction model.

Another simple yet effective operator that can be used
is a spectral decomposition and re-composition of the re-
gion of interest that modifies the saliency within the region.
For example, we can project the image into different fre-



Figure 5. Example screenshots from the eye-gaze user study app.

quency bands and recompute the weights of each band in
the reconstruction stage, such that the overall saliency in

the region of interest is modified. We use the multi-layer
Laplacian decomposition introduced in [11], where origi-



Figure 6. Example screenshots from our survey.

nal image I is decomposed to as I = Is +
∑

k=1,...,K Irk ,
where Irk = (1− L)Lk−1I is the k-th residual component,
while Is = LKI is the smooth component, and L can be any
smoothing or low frequency filters like bilateral filter [12],
Gaussian filter, Nonlocal Means filter [1], etc. 1 is the iden-
tity matrix.

Here, Oθ is a recomposition operator, as

Ĩ = Is +
∑

k=1,...,m

Irk +
∑

k=m+1,...,K

Irk ∗Wk, (2)

where each weighting map Wk is upsampled from a low-
resolution spatial grid θk, for k = m + 1, ...,K. In other
words, we will fix the smooth component and first m resid-
ual components, and only modify the remaining residual
components, where m is a parameter that can be tuned de-



pending how subtle we demand the effects to be. If we apply
the above method to a RGB image directly, unnatural colors
may be obtained sometimes. To avoid the issue, we can
either apply the same Wk on all three R, G, B channels, or
convert the image to L-ab format, and apply the decompo-
sition and recomposition on the L-layer only. This operator
can be combined with recoloring operator too, i.e, applying
recomposition operator in L channel, and recoloring operator
in ab channel.

Figure 7 shows a few examples that use the above spectral
recomposition to increase saliency, where the operator tends
to enhance detail/tone within the region of interest. Even
though increasing saliency is not the major focus of this
paper, we want to emphasize that the proposed framework
is general enough to support different kinds of attention
guiding effects with appropriate operators.
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Figure 7. Increased saliency with spectral decomposition.
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